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Elastic constants of discotic (nematic ) liquid crystals:

e� ect of packing

by KALYAN SINGH and N. S. PANDEY*²

Department of Physics and Electronics, Ram Manohar Lohia Avadh University,
Faizabad 224001, Uttar Pradesh, India

(Received 5 March 1997; in ® nal form 12 March 1998; accepted 13 March 1998 )

Using a previously developed theory of nematic liquid crystals (Singh, Y., and Singh, K.,
1986, Phys. Rev. A, 33, 3481) we present the calculation of elastic constants of discotic-
nematic liquid crystals and study the variation of elastic constants with packing fraction. The
expressions for elastic moduli associated with s̀play’, t̀wist’ and b̀end’ modes of deformations
are written in terms of order parameters characterizing the nature and amount of ordering
in the phase and structural parameters. Numerical calculations are done for a model system,
the molecules of which are hard oblate ellipsoids of revolution. It is observed that elastic
constants are very sensitive to packing density and become larger with increase of shape
anisotropy.

1. Introduction where K1 , K2 and K3 are elastic constants known as
splay, twist and bend, respectively. Thus they charac-The study of elastic constants of liquid crystals is

important for a number of reasons. In the ® rst place, terize the free energy increase associated with three
normal modes of deformation of the oriented discotic-they appear in the description of virtually all phenomena

where the orientation of the director is manipulated by nematic phase. A representation of splay, twist and bend
deformations of disc-like molecules is given in ® gure 1.external ® elds (e.g. in display devices). Secondly they

provide unusually sensitive probes of the microscopic Singh and Singh [5] have developed a density functional
theory for nematic liquid crystals and reported theirstructure of the orientationally ordered state. Since

the discovery of liquid crystals consisting of disc-like results at ® xed packing fraction. The purpose of this
paper is to present numerical results for a systemmolecules [1, 2] these substances have attracted con-

siderable attention due to their potential importance in composed of hard oblate ellipsoids of revolution (which
crudely simulates a discotic-nematic phase) at variousapplications on the one hand, and the very interesting

physics of the mesophases themselves on the other hand. packing fractions. Oblate ellipsoids are parametrized by
the length to width ratio x0=2a/2b, where 2a and 2bGasproux [3] gave a classi® cation of all observed meso-

phases, including a number of columnar and nematic are respectively lengths of the major and minor axes of
the ellipsoids. A brief theory and working equations arephases. In the present paper we restrict ourselves to the

nematic phases of discotic liquid crystals. given in § 2 and results and discussion in § 3.
The Frank elastic constants are a measure of free

energy associated with long-wavelength distortion of the
2. Theory and working equations

nematic state in which the local preferred direction of
We consider a system of nonspherical molecules ofmolecular orientation varies in space. If the local pre-

arbitrary symmetry in a volume V at temperature T . Whenferred direction at the point r is parallel to the direction
there are N particles in the system, the con® guration

nÃ (r) the free energy associated with distortion is written
energy U is approximated asas [4]

U (x1 , x2 , ¼ , xn ) = �
N

i=1
U

e
(x i ) + �

N

i>j=1
U (x i, x j ) (2 )

F =
1

2 P dr[K1 (V ¯nÃ )
2+ K2 (nÃ ¯V Ö nÃ )

2+ K3 (nÃ Ö V Ö nÃ )
2]

where for economy of notation we use vector x i to(1)
indicate both the location ri of the centre of mass of the
i
th molecule and its relative orientation V i described by*Author for correspondence.
Euler’s angles (y, w, j ) . U

e(x i ) is the potential energy² Central Forensic Science Laboratory, Sector 36A,
Chandigarh 160036, India. of a molecule at position ri due to external forces,

0267± 8292/98 $12´00 Ñ 1998 Taylor & Francis Ltd.
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412 K. Singh and N. S. Pandey

functional for the correlation functions and arises
from intermolecular interactions. H is also a functional
of single particle density distribution r(x) and pair
potential U . A homogeneous discotic (nematic) phase is
translationally invariant. Thus

r(x ) =r0 f (V) (4 )

where r0 is the mean number density and f (V) the
singlet orientational distribution function normalized to
unity

P f (V) dV =1, (5 )

f (V) is independent of position for a uniform nematic
phase.

In a distorted discotic (nematic) the orientational
distribution varies spatially in a complicated way. For
our purpose it is su� cient to allow it to vary only to
the extent that the director nÃ (r) does. In general, however,
any deformation will cause the orientational distribution
to be distorted in space from whatever form it had in
the perfectly ordered nematic state. But the di� erence
between f (eÃ ¯ nÃ (r) ) and the actual f in the case of long
wavelength distortions makes no contribution to the
Frank elastic constants [6].

In order to derive molecular expressions for the K i

values, we ® rst choose an arbitrary point at R =0 in the
deformed discotic state as the origin of a space ® xed
coordinate system. The z-axis of this system is taken as
parallel to the director at origin, i.e. zÃ =nÃ (R =0 ). For
pure splay, twist and bend deformations, the variation
in nÃ (R) are always con® ned to a plane. If the x-axis is
chosen such that (x , z) is the plane containing nÃ (R ),

nÃ (R) =xÃ sin xn ( R) + zÃ cos xn ( R) (6 )

xn (R) is the angle between the director at R and the
director at the origin and is given by [6]

xn (R) =G qx Õ q
2
xz + 0 (q

3
) for splay

qy for twist

qz + q
2
xz + 0 (q

3
) for bend

(7)

where q is the wave number associated with any dis-
tortion. From equations (1) and (6) we get distortionFigure 1. Representation of splay, twist and bend in rod-like

and disc-like molecules. free energy density around the origin ( in terms of K1 ,
K2 , K3 ) as

and U (x i , x j ) is the intermolecular pair potential for
molecules i and j.

The Helmholtz free energy, F , of the system is
Da( 0 ) =G 1

2
K1q

2 + ( 0 )q
4 splay

1

2
K2 q

2+ ( 0 )q
4 twist

1

2
K3 q

2+ ( 0 )q
4 bend

(8)
bF=bF id+ H (3 )

where bFid is the reduced Helmholtz free energy for
the ideal gas, and function H is used as a generating
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413Elastic constants of discotic L Cs

and distortion free energy as parallel to the space ® xed z-axis, and we have

f (V1 , 0 ) ; f (cos h1 ) =1 + � ¾
L¾ > 2

( 2L ¾ + 1 )P L¾ P L¾ (cos h1 )

DF= PV
Da ( R) d3

R . (9 )
(13)

Following Singh and Singh [5] K1 , K2 and K3 are given where P L¾ =1/2 Ÿ p
0 f (V1 , 0 ) P L¾ (cos h1 ) sin h1 dh1 is the

by orientational order parameter of the nematic phase. The
prime on the summation in equation (13) indicates

K i=� K
(n)
i (10) the restriction that only even L ¾ have to be considered.

The odd terms vanish because molecules do not
with distinguish ùp’ and d̀own’.

Molecule 2 has the same distribution function but its
orientation is de® ned with respect to the local directorK

(0)
i = Õ 2r

2
0kT P dr12r

2
12 P dV1 P dV2 f (V1 , 0 )

at vector r12 , i.e.

Ö F i (rÃ 12 , V1 , V2 )C2 (r0 ) (11 a)
f (V2 , xn (r12 ) ) ; f (cos hÄ 2 )

=1 + � ¾
L> 2

( 2L + 1 )P L¾ P L¾ (cos hÄ 2 ) (14)K
(1)
i = Õ 2r

3
0kT P r

2
12 dr12 P dV1 PdV2

where hÄ 2 is the angle between the long axis of moleculeÖ [ f (V1 , 0 ) Õ 1 ]F i(rÃ 12 , V1 , V2 )
2 and the local director, (cos hÄ 2 )= eÃ 2 ¯xÃ (r12 ). Using the
addition theorem for spherical harmonics we can write

Ö C dC2 (r0 )

dr0
+ P dr3 P dV3[ f (V3 , 0 ) Õ 1 ]C3 (r0 )D equation (14) in terms of space-® xed angles V2 axial to

the distortion angle xn (r12 ):
(11 b)

f (V2 , xn (r12 ) ) =1 + 4p � ¾
L> 1

P L�
M

Y LM(V2 ) � Y
*
LM(x

g
, 0 )

K
(2)
i = Õ r

4
0 kT P r

2
12 dr12 P dr3 P dV1 PdV2 P dV3

(15)

Ö [ f (V1 , 0 ) Õ 1 ] [ f (V3 , 0 ) Õ 1 ) ] ¯F i(rÃ 12 , V1 , V2 ) where

Y LM=Y LM(h2 , w2 )Ö
dC3 (r0 )

dr0
. (11 c)

and
Here

Y LM(x
g

, 0 ) =P LM(cos x
g

) ¯ P LM(cos x
g

)

is the associated Legendre function of degree L and
order M . Using the explicit forms of Legendre functionsF i(rÃ 12 , V1 , V2 ) = f ¾ (V2 , 0 )G Õ (rÃ 12 ¯xÃ ) (rÃ 12 ¯ zÃ )

0

(rÃ 12 ¯ xÃ ) (rÃ 12 ¯ zÃ ) H and following Singh and Singh [5], we get

f ¾ (V2 , 0 ) =4p �
L

P L[Y L,1 (V2 ) Õ Y L, Õ 1 (V2 ) ]P ¾L,1 ( 1 )

(16)+
1

2
f ² (V2 , 0 )G (rÃ 12 ¯xÃ )

2

(rÃ 12 ¯ yÃ )
2

(rÃ 12 ¯zÃ )
2 H (12)

f ² (V2 , 0 ) =4p �
L

P L{Y L,0 (V2 )P ²
L,0 ( 1 )

+[Y L,2 (V2 ) + Y L, Õ
2 (V2 ) ]P ²

L,2 ( 1 ) }. (17)and i stands for 1, 2 and 3. xÃ , yÃ and zÃ are unit vectors
along the space ® xed coordinate axes x , y and z which The potential energy of interaction of a pair of
are Cartesian components of r. f ¾ (V2 , 0 ) and f ² (V2 , 0 ) molecules is represented as
are ® rst and second order derivatives of f (V2 , xn (r12 ) )
with xn (r12 )=0 where r12 is the intermolecular distance.

U (r12 , V1 , V2 ) =G 2, r12<D (V12 )

0, r12 >D (V12 )
(18)For a uniaxial nematic phase with a symmetry plane

perpendicular to a director and composed of cylindrically
symmetric molecules, the singlet orientational distribution where D (V12 )[ ; D (r12 , V12 )] is the distance of closest
f (V) depends only on the angle h between the director approach of two molecules with relative orientation V12

and is given by the Gaussian model of Berne andand the molecular symmetry axis, where the director is
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414 K. Singh and N. S. Pandey

Pechukas [7] as
K

(2)
i = Õ r

4
0kT CÃ ²

2 (r0 ) P dV1[ f (V1 , 0 ) Õ 1 ]

Ö P dV3[ f (V3 , 0 ) Õ 1 ] P dV2 P drÃ 12D (V12 ) =D0C 1 Õ x

(rÃ 12 ¯eÃ 1 )
2+ (rÃ 12 ¯eÃ 2 )

2

Õ 2x(rÃ 12 ¯ eÃ 1 ) (rÃ 12 ¯ eÃ 2 ) (eÃ 1 ¯eÃ 2 )

1 Õ x
2
(eÃ 1 ¯ eÃ 2 )

2 DÕ 1/2

Ö P drÃ 23 P drÃ 13D
4
(rÃ 12 , V12 ) D

2
(rÃ 13 , V13 )

(19)

Ö D
2
(rÃ 23 , V23 )F i(rÃ 12 , V1 , V2 ) (22 c)where eÃ 1 and eÃ 2 are unit vectors along symmetry

axes of two interacting hard oblate ellipsoids, D0=2b where
and x = (x2

0 Õ 1)/(x2
0+ 1); rÃ 12 is a unit vector along the

intermolecular axes. CÃ 2 (r0 ) = P dr
*
12 (r

*
12 )C2 (r

*
12 , r0 )

For correlation functions appearing in equation (11)
we use the decoupling approximation of Parson [8] and = (8 Õ 28g+ 17g

2
)/160g (1 Õ g)

2 + ln ( 1 Õ g)/20g
2

take analytical solutions of Werthein [9] and Thiele
(23)[10], giving

and

CÃ ¾2 (r0 ) =dCÃ 2 (r0 )/dr0 , C ²
2 (r0 ) =d

2
CÃ 2 (r0 )/dr

2
0 . (24)

C2(r12 , V1 , V2 ) =C2 (r12 /D (V12 ) ) =C2 (r
*
12 )

=a1+ b1r
*
12 + ( 1/2 )a1g (r

*
12 )

3 for r
*
12<1

=0 for r
*
12>1

Integrals involving D
5, D

4, D
2, various powers of

D (V12 ) , are evaluated using expansion in terms of
(20) Legendre polynomials. We have adopted the same calcu-

lation procedures as Singh and Singh [5], which are
where discussed in detail by them.

r
*
12 = r12 /D (V12 )

3. Results and discussion

The model system under consideration is composeda1= Õ ( 1 + 2g)
2
/( 1 Õ g)

4

of hard oblate ellipsoids of revolution parametrized by
b1=6g[ 1 + ( 1/2 )g]2

/( 1 Õ g)
4 (21) length to width ratio x0 (<1 0́). The quantities Õ C2 (r0 ) ,

Õ gC ¾2 (r0 ) and Õ g
2
C ²

2 (r0 ) as functions of packingand g(=r0 v) is the packing fraction; v = (p/6)x0 (2b)3 is
fraction g have been plotted in ® gure 2. As the densitythe molecular volume.
increases the derivative terms become more important.A decoupling approximation decouples the trans-
Thus the convergence of the series of Frank elasticlational and orientational degrees of freedom. In the
constants in the ascending order of the direct correlationdecoupling approximation, the expression for the elastic
functions may become slower as density increases.constants reduces to

The theory developed above involves expansions in
(i ) the increasing order of direct correlation functions,

K
(0)
i = Õ 2r

2
0kT CÃ ¾2 (r0 ) P dV1 P dV2 drÃ 12 f (V1 , 0 ) and (ii) the degree of the order parameter products

P LP L¾ and P LP L¾ P L . Thus
Ö F i(rÃ 12 , V1 , V2 ) D

5
(rÃ 12 , V12 ) (22 a)

K i= �
2

n=0
K

(n)
i (25)

K
(1)
i = Õ 2r

3
0kT CÃ ¾2 (r0 ) P dV1[ f (V1 , 0 ) Õ 1 ]

where K
(0)
i contains the pair correlation functions, K

(1)
i

the three body correlation function and so on. K
(1)
i

consists of two termsÖ P dV2 P drÃ 12 F i (rÃ 12 , V1 , V2 )

K
(1)
i =K

(1,1)
i + K

(1,2)
i . (26)

Ö C D
5
(rÃ 12 , V12 ) + P dV3[ f (V3 , 0 ) Õ 1 ] P drÃ 13 The contribution of each elastic constant arising from

K
(0) and K

(1,1) can be written as a double sum over con-
tributions which are quadratic in the order parameters

Ö P drÃ 23 D
4
(rÃ 12 , V12 ) D

2
(rÃ 23 , V23 ) D

2
(rÃ 13 , V13 ) D P L. Thus

K
(1)
i =� ¾

L
� ¾

L¾
K

(1)
i (L , L ¾ ) . (27)

(22 b)
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415Elastic constants of discotic L Cs

The prime on summation in equations (27) and (28)
indicates the restriction that only even L have to be
considered because molecules do not distinguished ùp’
from d̀own’ and odd terms vanish. Here and below,
superscript (1 ) stands for (0 ) or (1, 1) and (m ) for (1, 2)
or (2). Each term of series (27) and (28) can be written
as

K
(1)
i =K

(1)
i ( 2, 2 ) + 2K

(1)
i ( 2, 4 ) + (29 a)

K
(m)
i =K

(m)
i ( 2, 2, 2 )+ (29 b)

where

K
(1)
i (L , L ¾ )3P LP L¾

and

K
(m)
i (L , L ¾ , L ² )3P LP L¾ P L . (30)

The convergence of equations (25) and (28) is expected
to be good for x #1 but poor for a system of molecules
with large anisotropy in intermolecular interactions. To
test this we list in the table the contribution of individual
terms of the series (25) for x0=0 3́33 for P2=0 5́0,
P4=0 1́5, g=0 5́ and 0 4́, 2b =15 0́ AÊ and T =600 K.
These parameters crudely simulate a discotic nematic
phase of triphenylene hexa-n-hexyloxybenzoate.

Figure 2. The variation of Õ CÃ 2 (r0 ), Õ gCÃ ¾2 (r0 ) and
A number of observations can be made from the table.g

2
CÃ ²

2 (r0 )/2 as functions of packing fraction g .
Even though series (29) is found to converge rapidly,
the number of terms written explicitly are not enough
for oblate ellipsoids of revolution. [2K

(1)
i (2, 4)/K (1)

i (2, 2)]K
(1,2)

i and K
(2)
i can be expressed as a triplet sum over

contributions which are cubic in order parameters P L is of order of 0 2́1, 0 0́5 and 0 0́28 respectively for K
(1)
i ,

K
(1)
2 and K

(1)
3 , indicating that higher order terms should

K
(m)
i =� ¾

L
� ¾

L¾
� ¾

L
K

(m)
i (L , L ¾ , L ² ) . (28)

not be neglected for x0>0 3́33. The contribution of

Table. Contribution of individual terms of the series (25) and (29) to the elastic constants for hard-core repulsion for oblate
(x =0 3́3) ellipsoids of revolution. Here for P2=0 5́, P4=0 1́5, T #600 K, 2b =5 0́ AÂ and g =0 5́ and 0 4́. The values for K i

are given in units of 10 Õ
7 dyne.

g =0 5́ g =0 4́

Elastic constant K1 K2 K3 K1 K2 K3

K
(0)
i (2, 2 ) 5 6́45 7 9́62 5 6́45 2 8́83 4 0́66 2 8́83

2K
(0)
i (2, 4 ) 1 0́90 0 3́63 Õ 1 4́53 0 5́57 0 1́86 Õ 0 7́42

K
(0)
i 6 7́35 8 3́25 4 1́92 3 4́40 4 2́52 2 1́40

K
(0)p
i 6 9́95 8 3́42 4 4́89 3 5́70 4 2́60 2 2́92

K
(1,1)

i (2, 2) 7 1́21 10 0́43 7 1́21 2 3́33 3 2́90 2 3́33
2K

(1,1)
i (2, 4 ) 1 2́75 0 4́85 Õ 1 8́33 0 4́50 0 1́50 Õ 0 6́00

K
(1,1)p

i 8 4́96 10 5́01 5 2́88 2 7́83 3 4́40 1 7́33
K

(1,1)
i 8 8́25 10 5́22 5 6́63 2 8́90 3 4́47 1 8́55

K
(1,2)

i (1, 2, 2) Õ 0 7́68 Õ 0 7́97 Õ 0 7́08 Õ 0 2́51 Õ 0 2́61 Õ 0 2́52
K

(1)p
i 7 7́28 9 7́04 4 5́80 2 5́33 3 1́79 1 4́81

K
(2)
i (2, 2, 2) Õ 0 9́51 Õ 0 9́88 Õ 0 8́77 Õ 0 2́03 Õ 0 2́11 Õ 0 1́87

K i 13 5́12 17 0́41 7 8́95 5 7́69 7 2́20 3 4́34
K

p
i 14 1́01 17 0́79 8 5́67 6 0́06 7 2́35 3 7́08

K
p,p
i 14 2́01 17 1́70 8 6́98 6 0́20 7 2́48 3 7́27
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416 K. Singh and N. S. Pandey

higher order terms in the series (29) can be approximated
with the help of a simple [1, 0] Pade approximant.
Thus,

K
(1)p
i =K

(1)
i ( 2, 2 ) {1 Õ [2K

(1)
i ( 2, 4 )/K

(1)
i (2, 2 ) ]} Õ

1
.

(31)

These values are given in the table for each K
(1)
i and

are compared with values without the Pade approxi-
mant. We observe that the contribution of higher-
order terms in series (29) is small but not negligible.
K

(m)
i (2, 2, 2) is also found to be small for oblate ellipsoids.

The convergence of series (25) is also fairly good.
However, we can approximate it to assess the contri-
bution of higher-order terms in (25) applying [1, 0]
Pade approximant. Thus

K
pp
i =K

(0)p
i + K

(1)p
i {1 Õ [K

(2)
i /K

(1)p
i ] Õ

1
}. (32)

It may be recalled that in the case of molecular liquids Figure 3. The variation of splay elastic constant K1 with
packing fraction g for oblate system.the [1, 0] Pade approximation has been found to yield

excellent results for thermodynamic properties even for
a diverging series [11, 12]. We therefore believe that the
Pade approximant would yield accurate results for all
values of x0 .

For oblate molecules, K
(1)
i (2, 2)>K

(1)
i (2, 2)=K

(1)
3 (2, 2),

and 2K
(1)
2 (2, 4) is negative for K3 and positive for K1

and K2 . Since the magnitude of 2K
(1)
i (2, 4) is small

we ® nd the general relation K2>K1>K3 for oblate
ellipsoids, which is intuitively correct [13]. For disc-like
molecules these deformations shown in ® gure (1) should
convince us that it is more di� cult to twist a plane of
disc-like molecules than it is to twist a plane of rodlike
molecules, and it is a very di� cult deformation to apply.
Hence, we expect K2 to be the largest elastic constant
for disc-like molecules, whereas for rodlike molecule it
is the smallest among three. Hence the relation among
K is for discotic nematics is K2>K1>K3 .

Our calculation suggests the following general
solution:

(1/3 )K
(1)
i ( 2, 4 ) =K

(1)
2 ( 2, 4 ) = Õ ( 1/4 )K

(1)
3 ( 2, 4 )

and

K
(1)
1 ( 2, 2 ) =K

(1)
3 ( 2, 2 )

which holds for all x0 and at all packing fractions and Figure 4. The variation of twist elastic constant K2 with
packing fraction g for oblate system.is independent of potential model. In ® gures 3± 5 we

have plotted, respectively, K1 , K2 and K3 as a function
of packing fraction (g) for three values of x0 (=0 2́5,
0 3́3 and 0 5́5). The elastic constants for all modes of In the table K1 , K2 and K3 are given for two values

of g (0 5́ and 0 4́ ) which are, respectively, 14 2́0, 17 1́7deformation are very sensitive to packing fraction. We
also observe that as anisotropy increases (i.e. x0 moves and 8 6́98 and 6 0́2, 7 2́5 and 3 7́3 in units of 10 Õ

7 dyne.
We have not compared these results with experimentalfrom 0 5́5 to 0 2́5), the variation of elastic moduli

becomes more sensitive to g values. A similar study values because of the non-availability of data for any
real system, but we anticipate that our results will behas been reported by Somoza and Tarazona [14] for

rod-shaped molecules. helpful in the further study of discotics.
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are then oblate spheroids with the symmetry axis
along eÃ 1 Ö eÃ 2 , the axial ratio of this spheroid being
( 1/2 ) ( 1 + x

2
0 )1/2<x0 .
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